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SELF-SIMILAR SOLUTIONS OF THE DYNAMICS EQUATIONS OF AN IDEAL ELASTIC-PLASTIC
BODY UNDER TRESCA PLASTICITY CONDITIONS

G. I. Bykovtsev, A. V. Kolokol'chikov, unc 539.3
and P. N. Sygurov

Self-similar solutions of the dynamics equations of an ideal elastic-plastic body under
Mises plasticity conditions were examined in [1-4], where the solutions of the boundary-value
problems were reduced to the solution of two-point problems of nonlinear differential equa-
tions with singularities. It is shown below that these equations, under Tresca plasticity con-
ditions, are integrated in quadratures which will permit achievement of significant simplifi-
cations.

1. The equations describing the behavior of Prandtl-Reiss bodies have the form
1
ej=eby T et ey =g (Lt ue)e 0= heyydy = 2meg (1.1)

v, =0, U.:l;,., 1.2)
4 i

Oii — PY%

where uj is the displacement, and the dot denotes differentiation with respect to time.
Let us consider the plane strain of a medium under Tresk plasticity conditions
[T mad= k. (1.3

Let 035 be the third principal stress os. We designate the other two such that o, > 0,. Let
us examine possible variations.

A. Let g, > 03 > 0. Then condition (1.3) takes the form
(;1—-02=2k. (1'4)
From the associated flow law there follows
b B=0, ¢l=0, eP>0.
Since es; = 0, e§5 = 0, we have from (1.1)
Gy = 033 = (1/2)(0yy + Op)MA + )t
We have for the principal stresses in the Ox,x, plane
020, =0 % V(Un — 0,,)F + 4ol (1.5)
From the relationships (1.4) and (1.5) there follows
(031 —055)% + 40?2 = 4% (1.6)

The associated flow law has the form

— P P
6119 022_811. 322, ejp +é1’ = 0. (1.7)
55 p 1n 22
12 2e 5y
We satisfy condition (1.6) by setting
O3 = 0+ kcos 20, 0y = 0 — ko5 28, 0,5 = k sin 26, (1.8

where ¢ 1s the angle between the first principal direction and the 0Ox, axis. Substituting
(1.8) into the relations (1.1), (1.2), and (1.7), we obtain a system of equations to deter-
mine o, 6, v, V2

0,3 — 2k(8,; sin 20 — 6,5 cos 20) — pv; = O; (1.9}

Kuibyshev. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6
pp. 148-156, November-December, 1984. Original article submitted November 22, 1983.

3

0021-8944/84/2506-0941808.50 © 1985 Plenum Publishing Corporation 941



0,5 — 24(0,5 sin 20 - 0,; cos 20) — pv, = 0; (1.10)
20 = Mvy,s — Ug,1) 8in 20 + p(vy,s + va,;) cos 26; (1.11)
6= A+ W1 + o) (1.12)

The principal values of the strain rates are determined from the formulas

P P cos’ ;P oin2 2.9 &i

el =1¢% cos” 04 ¢, sin 0+ 2¢F, sin O cos 6,
"y _

2

. P gin? ;P cos2 0 — 2P si
e e sin® 0+ ef, cos” 0 2%, sin O cos O.

The relationships (1.9)-(1.12) hold under the conditions o, > 05 > 0, and ég > 0. These
conditions have the form

A+ k> po > — (b + Wk (1.13)
(V2.2 — V1) €08 20 — (v1,5 + vp,y) sin 260 < 0. (1.14)

B. Let 053 = 0,. Then the stress state corresponds to intersection of two faces of the
plasticity condition

6, — 0y = 2k, 0y — 03 = 2k. (1.15)
There follows from the generalized associated flow law
(P oR4eP—0, ¢P>0, <0, e§<O.
We obtain from (1.1) and (1.15)
o, -+ 03+ 05 = (A + 201+ v2a)- (1.16)
From (1.15) we have G, = &, = 63 = 0 and (1.16) takes the form
= (h+ @BWELL T vaa): (1.17)

Let us note that the first condition in (1.15) and condition (1.4) agree and by reasoning and
performing calculations as in case A, we arrive at the deduction that o, 8, vy, vz satisfy
equations (1.9)-(1.11) on the edge of the Tresca plasticity conditions, while (1.12) is replaced
by (1.17).

p
The inequalities 3 <0, &5 <0, i.e.,
(Vi — Vz,) €08 20 - (v, -+ y,1) sin 20 > (113}, + v22) 20 )
should hold on the edge under consideration.

C. Let 0, = Us. Then the stress state corresponds to an edge of the Tresk conditionm,
which is the intersection of the faces

6, — 0, = 2k, 703 — o, = 2k. (1.18)
There follows from the generalized associated flow law
EPpeBreR—0, 6930, ef <0 e3>0.
Reasoning as in case B, we obtain that o, 8, v,, Va satisfy the equations (1.9)-(1.11), (1.17)
on the edge o under consideration, while the inequalities &P > 0, &% > 0 take the form

(V1,1 ~ Vg,g) €08 20+ (vg,5 - vy.1) sin 20 > —(1/3)(vy,y + Va.2) > 0. (1.19)
D. Let 0, > 02 > 0s; then the plasticity condition has the form
oy — 63 = 2k, (1.20)

From the associated flow law we obtain
eP+oB=0, ¢8=0, ¢8>0, ¢§<O. (1.21)

The stresses and plastic strain rates are expressed in terms of the principal values by
means of the formulas

G =0 sin2@, 0y, = © cos 20, 6y, = —% cos 0 sin 0,

11 + y sin 22 + ¥ 12 Y (1.22)

—G — ;P — ¢ P cos? P — ¢ P sipn® oD oD
Y=10,—0, e =e5008°0, ej =e¢)sin 8, el,=efsingcosO

We obtain from thaz motion equations
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01,1 1 ¥,1 8in? 8 — 7y, sin 0 cos & 4 p(0,; sin 26 — 0, cos 20) = p.vl, (1.23)

Ope T V.2 €082 0 — y,; 5in 6 cos 0 — (8, sin 20 4 0, cos 20) = p.uz.
Differentiating (1.1) with respect to time and substituting (1.22), we obtain after eliminat-
ing &P and ép
301 + 1= (3h + 201y + 2.0,
(0, — ) sin 20 — 290 cos 20 = A(r;,; - vg.e) Sin 20 ++ 20(vy,5 - van)s (1.24)
0 4 W(tp. — vy,1) S0 20 £ p(vg.p + vy} cOS 20 = 0.
Therefore, to determine the five unknown functions o,, v, 9, v,, v, on the face (1.20) we have

a system of five equations (1.23) and (1.24). By using (1.1), we obtain from (1.21) that
(1.23) and (1.24) hold under the conditions

(Vgg — 11,1) €08 20 — (v, | Up,y) SiN 20 < vy,y + v, —2k <y < 0.
E. Let o3 > 0y > 0,; then the plasticity condition has the form
03 — 0y = 2k.
We obtain from the associated flow law

e’z’—reg-——(), ef=0, el <0, €§>0-

We have for the stress and plastic strain rate components

= — in2 = 1
Gy = Op — 7 €02 0, Oy = 0, — y5in2 B, 03, = —y cos Hsin 6,
. p . . . . . “p
efl, +Psin?o, el, = ePcos® B, el =—el sin 0 cos 0.

Furthermore, by reasoning as in case D, we obtain a system of equations to determine
0z, 9, v, vi, v, in the form

O2,1 — V.1 €082 0 — y 5 5in 0 cos 0 4 y(0,, sin 26 — 0, cos 20) = pv,,
Oy, — V.2 8in? 0 — v , sin 0 cos 6 — y(8,, sin 20 4- 6,; cos 28) = pv,,
(0 -+ ) sin 20 - 296 cos 20 - 2u(vyy £ v1g) = Aty - vs,g) Sin 20,
Y0+ R(vpe — 1,y) SN 20+ vy - vs) c0S 20 = 0,

30, — ¢ = (3L + 2)(vy, + 7aa).,
which will hold under the conditions

(1.25)

(a2 — Uy,1) €08 20 — (vy,, -+ vy,q) 80 20 2= —(vy,q - vg0)y —2k <y < 0.
F. Let 0, = 0,. Then 0;;, = 022 = 0, 01, = 0 and there follows from the motion equations
6,1 — iy =0, 0,5 — pry = 0. (1.26)
The plasticity condition will be satisfied if
O3 — 6, = 2k, 03 — 0, = 2k. (1.27)
There follows from the associated flow law
el el P =0, P<0, £<0, f>0, (1.28)
There follows &3 = G253 = & from (1.27) and we obtain from (1.1)
o= (h+ (23)W(vy,, + 22 (1.29)

The relationships (1.26) and (1.29) are a closed linear system of equations to determine O,
Vi, V2. The inequalities (1.28) will be satisfied for

(3w + vag) - _‘/(1’1,1 — )+ (V12 + 12, < 0.

If the plasticity condition has the form ¢, — g5 = 2k, 0, — 045 = 2k, then (1.29) holds, and
the associated flow law

. . a -

ePf el el =0, eP>0, e£>0. PO
will be satisfied, if

(1/3)(vy,1 + va,9) — V(l’l,l — Upa)? A (vyg - v20)2 > O
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Therefore, in contrast to the rigidly plastic problem, the Tresca plasticity condition
edges play the same role in the plane elastic-plastic problem as do the taces, i.e., result
in a closed system of equations in the presence of constraints, where this system holds.

The idea of using the edges of the Tresca plasticity conditions to solve axisymmetric bound-
ary-value problems was first utilized in [5], this idea was later used extensively in [6] to
solve three-dimensional problems. Definite simplifications can be achieved even when solving
plane elastic-plastic problems.

2. Let us examine the self-similar solution of the equations for the plane dynamics prob-
lem of an elastic-plastic body under Tresca plasticity conditioms.

We take the angle
¢ == arc tg [iy(r; — ct)1],
where ¢ = const, ¢ > ¢; = /?XfI_EJSEZT; as the self-similar variable.
Going over to the self-similar variable in (1.9)-(1.12), we obtain
— ¢’ sin ¢ 4~ 2k0’ cos (¢ — 20) — pcvi sing =0,
¢’ cos ¢ — 2k0’ sin (@ — 26) — pcv; sing =0,
co’ sin ¢ + (A + p) (vy sin @ — vy cos ¢) =0, (2.1)
2k0¢ sin @ -~ v, cos (¢ — 20) — py sin (¢ — 26) = 0.
The system (2.1) has trivial solutions, i.e., 0, 6, vi, v, are constants independent of g¢.
Other solutions of this system are possible only under the condition that its determi-

nant vanishes:

p2(1 — p?) cos? 2(p ~— 0) = EIIZ sin? @(1 — M2 sin? @), (2.2)

- 2 -
M=ccih, p=c,eft G=pp L

Since 0:i < p? < %,, real values of 9 can be obtained from (2.2) only for %, satisfying
the inequalities

o< M2sin2p<<p?, 1l —p2 < M2sin2 << 1. (2.3)
Differentiating (2.2) with respect to @ and eliminating 6' from (2.1), after integrating we can
represent the solution in the form

2
. p-2_=sign(cos2(p—0)) [1‘2” X

% I
«In pM sin ¢ — V(i — 9 {1 — M?sin® ) |+ Vi-——pz arcsin (M sin q))jl__ (2.4)
Msing+ V{I— ) (1— M sin® ¢} |
sgn(sin2(9—0) VI—p | Vi_winty dgp -+ C;
i ? v 1/1—-p2—M2 sin® v
v pep Vi —p ' - - - -
2 A —= — sign (sin 2 (¢ — 9))[2 V(PZ—MZ sin® @){1—p®—M? sin® @) —
2| VR Mg+ Vi—p—Msin’ o |- 0.5

— sign (cos 2 (¢ — 6)) [(Zp2 —M)1In I M cos ¢ + V'1— M sin? @ l +

o VL2 T —
Meosp— V M+ o> — 1) (1 — M sin® ¢) +2MCOS¢V1_MZSm2¢]+CT

+2pVM2—i—p2—1ln| : _
Mcos g+ V (M2 + p* — 1) (1 — M sin® @)

Tt follows from (2.2) that the inequality (1.14) will always be satisfied for values of M and
¢ belonging to the interval (2.3).
An analysis of the self-similar solutions for the edges (1.15) is performed analogously.

The condition that the determinant vanish has the form
p2(1 — (4/3)p?) cos? 2(¢p — 0) = (1 — (1/3)p? — M2 sin?® @)M? sin? @. (2.6)

Real values of 6 can be determined for values of ¢, satisfying the inequalities
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3 . . 4 2 1

7 OSMsinto<<l—5 0%, <M sin? g =p? 2.7
3 n .. 0 2 4 2 1
- 0KM?sin® ¢ < 7, 1——.3p2<M“sin2q><1—~§p

2
.

We obtain the expressions for o, v, in the form

7
———2lq)——s=sign(cos2((p——9)) e X
iV 11— p?
M si 1— = ) 1—p2 —M‘~’sin2q>) (2.8)
pM sin ¢ — ——3}7‘ 3 . Msin ¢ )
xIn = -- arcsin -———‘“—“‘/ = -
& = . P
pM sin ¢ 1/(1——3—p~)(1—’; —Mzsm2(p) \, 1—5
— M? sin? ’
-} sign (sin 2 (¢ — 0)) e b do -+ Cy;

§V1~—p —MZ?sin? ¢

2t2_1+_4__p2
pe sign (sin 2 (¢ — 8)) 1—{—2 2] P 3
U T Z +rin Pt —t +
2p]/1—§
(" i
t—gp » pt'}“/-i 3P sign (cos 2 (¢ — 8))
HETry My e 7z .|| T,
2(t* — 5 2 3
Vi—gp‘ pt—]/ l—3p | PV1—3P
4
T > 2 ]/1__—3—;;2
x1n Mcos{p+1/1u,—3p2—M‘5in‘<P -+ sign (cos 2 (¢ — 8)) ——5——X (2.9)
1 2 1o o) q|tE
X\1—7gp —2M 1——3p —2M niT—7 |+
13 4 28
(s —1>—‘3‘P‘+TP4 pt eV g -
T 4 1 7 I
2 2 2, % 2
R PR e e oy 7o o
1 4 5
M(i—gpzi Mt——}—Vi-—gp‘
* 4 I " |
2 P
2(1——-§)-p“)(M2—{——3“~—1) Mt——]/i——-gp2
where 4
2 (1 _% p2 — M2 sin? CP) (pz — M2 sin? (P)_l-

3. Let an acute wedge with aperture 2o move at a constant supersonic speed ¢ in an elas-—
tic-plastic medium. Assuming no contact friction, we write the boundary conditions in the
form

Gya(21s 0) = 0, vafzy, 0) = —ctg o, x; < 0. (3.1)

The medium 1s not perturbed in the domain a'0Oaq (Fig. 1) ahead of the wedge, i.e., g5 =
0, vi = 0. The lines Oa and Oa' move iIn the direction of the normal at the velocity of the
irrotational waves ¢ = (A + 2u)/p, which is the maximum possible velocity of perturbation
propagation in an elastic-plastic medium [7].

It is shown in [7] that neutral strong-discontinuity waves exist in elastic-plastic
medium, on which the following relationships are satisfied

pc';’ =A+2p, [y]= mv%, [e%] 0, —cfoy]= (m“. =+ 2uv§v}) w; (3.2)
S 2 __ . _ 2 2
pei=p, [vy]Vvi=0, [efj]ho, —c, [Uij]—p([vi] V3 + v vi), (3.3)
where c;, ca are the elastic wave velocities, v;, v% are the normals to the wave surface:
- 1y o _ -
=M1 v=—M VMZ——l, V§=V§=0, V=ML, V=Mt VMZ——pz.

Upon insertion the wedge excites two neutral strong discontinuity waves Og and 0Ob moving at
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Fig. 1 Fig. 2

the velocities ¢, anc c,, respectively. We obtain the stress state at oOb from (3.2) in the
form
oy = —pey(1 — 2p® + 2p*M )0, 0y = —pey(1 — 2pPM%)o,

(3.4)
0y = 2p6,p"VMZ — IM20, gy = —pey(1 — 2p%)0.

We obtain at bOc from (3.3) and (3.4)

vy = @Mt — pu] VM — p%, v, = —oMIYME —1— [n,],
01y = —pey(1 — 2p% + 2pTM-2)0 + 20e,M 1Y/ MZ — pilu,],
Oap = —pey(1 — 2pM2)o — 2pe;MTY ME = p2[v, ], (3.5)
01z = 206, M2/ ME — 10 — pep M1, [(M2 — 2p?),
033 = —pey(1 — 2pHa.
There follows from the boundary conditions (3.1) and the relationships (3.5)
® = ¢, tg (M2 — 2p3)(M2 — 1)°1/2, [p,] = 2¢,p?M1 tg @ (3.6)

We obtain from (3.4) and (3.6) that the medium will be in the elastic state in the domain aOb
if

g= ot ltga< VI —1 (M —2p) " =1 (3.7)
For q = r a plastic state corresponding to the edge o, = 035 = 02 + 2k will be in the domain

a0Ob. If the inequality (3.7) is satisfied, then the medium will be in the elastic state at
the domain bOc for

1< M2 < 2p® + 201 — V),
g < VIEZ M2 — 2p%)7H(—1 + 2M* — 27)7, (3.8)

where
T = 2pM-(M? — 2p%)YY/ (ME — D)(ME — p*). (3.9)

The curve 1, below which the inequality (3.7) is satisfied, and the curve 2 below which the
inequality (3.8) is satisfied, are constructed, and intersect at the point A in Fig. 2 for

p? = 0.3 in the plane (M™%, q), where q = p?pcik~*tga. It follows from Fig. 2 that in both
the neighborhood of M = 1 and for sufficiently large M values of q will always exist for which
an elastic solution will be impossible. The elastic solution is possible only in the domain
below both curves (shaded domain in Fig. 2). '

Analysis of the inequalities (3.7)-(3.9) shows that for p? < '/, aswell as for p®>="/,, 4p* (4p®—
- > M? o= 2p% + 201 ——/35) the plasticity is first manifest in the domain a0b as tg o
increases, if q = VM® — 1(M* — 2p*)”™'. The maximal tangential stress achieved the value k
in the domain bOc only for p? > Y., M* = 4p"“(4p® — 1)" as well as for p? < Yp and 1 < M
2p% + 2(1 — V/2p). As tg a increases the plasticity is first manifest i1if

o= VIETAME — 2571 — oM 4 200, = VP — 1M =231 4 M2 — 2107

respectively. We obtain from (3.5) for normal pressure on the wedge face
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., el
0y = —petM 2 [4° VT — 7 I (v — 272 (v — 1) 2] g o

Let the medium In the domain bOc be in the plastic state, and in the elastic state in
a0b, then the solution in a0b is determined from formula (3.4), in bOf from (3.5), plastic
strain occurs in fOg, and the integrals (2.2), (2.4), (2.5) are executed, the stresses and
displacement velocities are constant in gO0c and equal to theilr values on the line Og. We ob-
tain 6 = 0 on the line Og from (3.1) and we have the following equation from (2.2)

P21 — p?) cos? 2¢, = M2 sin? ;{1 — M? sin? ¢,) (3.10)
to determine ¢, (the slope of Og to the x, axis).

Equation (3.10) has the solution

ML (1) M VM —2) 1 8 (1 —p) (3.11)
2M* - 8M2% {1 — p%) |
in bOc where M?sin qﬁg p®. Plastic strain occurs in bOf, from (1.6) and (3.5) there follows

.2
sin” @,

0%+ [0, M — 4p?M 30 [1,] ( V/ MF — 1 (% — 2p°) —

(3.12)
—p(M2—2) VM=) = ¥p2 (pc2) L
On the line Of where ¢ = ¢, the following nontrivial solution holds
pYL — p?) cos? 2(g, — B,) = (1 — M2 sin? @,)M? sin? g,. (3.13)
From the condition of continuity of 0,: we obtain on the line Of
200" VME — IM20 — pey (M2 — 2p")M 7 [v,] = F sin 26, (3.14)
For @ = ¢, we have v, (%) = —[v,] — WM-*/M® =1 from (3.6); consequently there follows from

(2.8) and (3.1) the relationship

sign (sin 2 (p — 8)) [2 V(pz'—M?‘ sin® @) {1 — p* — M? sin® ) —
—{1—2p%) lnl sz——-Mzsinz(p -+ 1/1——[)2 —Masinztp”+
4 {20 —M In|Mecos g+ V1I—_MZsind g|+2p VME+ 2F —1x ’ (3.15)
M cos ¢ — 1/(M2 4- p* — 1) {1 — M? sin? )
! M cos @ - V(M2+p2 — 1} {1 — M2 sin? @)
+ ]+ o VMM"I:ctga.

%1

+2Mcosp V1 — MZsin? p 4

For given values of tg o« values of u, [v2], 92, 62 are determined from the relationships
(3.12)-(3.15). This solution holds while |w]p®pc, < k. TFor w = k(pZpc;) ' the yield point
is reached in the domain aOb. Substituting the value w obtained into (3.12) and (3.15), we
obtain the maximal values of q for which this solution is still possible. We limit ourselves
to the solution of (3.12)-(3.15) for large M. Here sin?@, = p?M~2 = 4p*(1 — p?) (1 — 2p*)~*-
M™* + o(M~®). The maximal q for which the medium will be in the elastic state in a0b while
plastic strain occurs in bOc in the zone fOg, will have the form

g M2V ME— 1. (3.16)
Setting sin*¢, = p?M~? — bM™“, where b is an unknown quantity, we have from (3.12)-(3.15)

= p*(1 — p)(1 — 2p%)72p — gM3 (M2 — 4p312,
The normal pressure on the wedge face is expressed in the form

Ogp = — b — {1 — PP} peM? (M? — 1) V2 tg o - M™% (@ — 3},
where

a = 4pi(1 — p*)(1 —_2p2)~L.

Let the medium be in a plastic strain state in the domain a0b, and in the elastic state
in the domain bOc. Then the solution in the zoné e0d is determined from (2.6)-(2,9), and
from (3.5) in bOec, where the stresses and displacement velocities are constant in bOc and
equal to the values directly behind the line Ob. In a0d the stresses and displacement veloc-—
ities are determined from (3.4), where the Intensity of the irrotational wave is u =
kp~*(pc,)™’. For media with p® > % the allowable values of M from (2.7) are small. If the

medium is characterized by the values Y, < p? < ¥, deformation is possible in the mentioned
form for large M.
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Fig.
The maximal value of q obtained under the assumption of attainment of the plasticity

state beyond the line Ob, where deformation of the type mentioned is still possible, is
expressed in the form

g<M2 VM2 1+ (1 Z v \ (m ——) (}/—1——-p 2M)_1, (3.17)

where 4
Mzsmz(pl:i_ M,

4 4 -1
M2 sin? P =1—5 " +aM_2—1-——p + 452 (1-3 p)(i—/l—- ) ( —%Iﬁ) M~2,

An equation to determine r follows from the boundary condition (3.1)
— — 7 4 -t
q=M2VM2—1+(1——3-p2>(2MV1—§p2) In%-l—
21 (M2 — 2,2) 4 -1 _
+ M (M2 — 22) [2]/1_3172_‘/(1_? )(1_3_p2) p2]+
3 V A L 5
+3p 1"“317 (1—‘§P M™+ 7 |(r—a) 1—[——2-172)1;_2—
7 4 r 4 —1/2
~(1-F)(i- % )1“?](1—‘9:1*) M
The normal pressure on the wedge face is expressed in the form
k k 7 ,,) ( i
G =——7F——5|1—=p° l— .
2 P pz( gP )yt Mz)

If the inequality (3.16) or (3.17) is not satisfied, then in both the domain gOb and the do-
main bOc the medium will be in the plasticity state.

The solutions in a0d are determined by~(3.4), while plastic deformationoccurs in dOe and
the integrals (2.2)-(2.5) hold, and the stresses and displacement velocities are constant in
dOb and equal to their values on the line Oe.

The solutions in the zone bOf are determined by (3.5), the integrals (2.2)-(2.5) hold in
fO0g, and the stresses and displacement velocities retain their values behind the line Og, equal
to their values on the line Og. For large values of M we use the notation

. 4 7 o\ s _
M? sin® <Pl=p"’—4pz<1_?. Pz)(i—‘gpz) M~ =p — kM7,

2 9 4 —
M2 gjp2 9, = PP —eM™2, M2 sin? @y = 1 _3112 4™ 2

-1 " % 2 4 —
MzSin2‘P4=1—“§‘P2+4p2(1—§'1’2)(1‘%132) (1—1/1—‘3'1’2) M7= 41—t e

The plastic deformation in zones dOe and fOg occur under the identical condition (1.18);
therefore, the following equality holds
pelvy] = 2kp*3M-2[M-1p"Y(M2 — 2p?) sin 20; — 2M~1)/ME — 12 cos 26;].

From the condition of continuity of ¢,, we obtain on the line Of
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f+r=4P2(1~-§ p2> (1~% 112)_1 (]/ 1—%11'“’—1)>“.

There follows from the boundary condition (3.1)

. T 1\
ln*{z:—2MqV1——“3—p2(1—3‘p2} .

The normal pressure on the wedge face is expressed in the form

G':‘lﬁ'—l_k 1*121?—-‘ _1_-
22 p2 p‘.}( 3P>na I‘O<1\I)-
The pressure change on the wedge face 1s shown in Fig. 3 for p® = 0.3 and ¢ = 0.1 as a
function of the velocity of wedge penetration. We obtain the minimal pressure in the elas-
tic solution for M* = 1.18. As M decreases and increases the pressure rises. At the value
M? = 99.82 plastic flow sets in at the wedge face (the domain bOc in Fig. 1) and the pressure
growth is terminated. For M? = 100.20 plasticity sets in even in the domain aOb. Later the

pressure grows in proportion to M as M increases.
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THEORY OF IDEAL PLASTICITY OF MULTICOMPONENT MIXTURES

L. A. Saraev UdDC 539.4

1. We consider a rigidly plastic micro—inhomogeneous isotropic medium consisting of n
different components interconnected by ideal adhesion. Let the plastic properties of each
component be described by the surface flow taking the hydrostatic pressure into account

2 __ g2 _
8355 T a0 =hy, s=1,2,...,n,

where Sijy = Oq; — dijopp/B,.oij is the stress temsor, kg are the component yield points, and
ag are paramet%rs characterizing their volume compressibility.

The structure of such a medium can be described by a system of random indicator functions
of the coordinates #1(T), %o(T), ...y %, (1), from which each function % (r) equals unity on a set of points
of the s-th component and equals zero outside this set. By using these functions the local
associated flow law of the composite material under consideration can be written in the form
[1] &;5 (1) — §;;0 (1) €op (r)

0y (1) = k(1) :
7 V e ey (0 —b () e, ()

(1.1)

n
where ej4(r) is the strain rate tensor; k(r)= 3k, (r); and
§=1
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